Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-251207

RESUMO

While vaccines are vital for preventing COVID-19 infections, it is critical to develop new therapies to treat patients who become infected. Pharmacological targeting of a host factor required for viral replication can suppress viral spread with a low probability of viral mutation leading to resistance. In particular, host kinases are highly druggable targets and a number of conserved coronavirus proteins, notably the nucleoprotein (N), require phosphorylation for full functionality. In order to understand how targeting kinases could be used to compromise viral replication, we used a combination of phosphoproteomics and bioinformatics as well as genetic and pharmacological kinase inhibition to define the enzymes important for SARS-CoV-2 N protein phosphorylation and viral replication. From these data, we propose a model whereby SRPK1/2 initiates phosphorylation of the N protein, which primes for further phosphorylation by GSK-3/{beta} and CK1 to achieve extensive phosphorylation of the N protein SR-rich domain. Importantly, we were able to leverage our data to identify an FDA-approved kinase inhibitor, Alectinib, that suppresses N phosphorylation by SRPK1/2 and limits SARS-CoV-2 replication. Together, these data suggest that repurposing or developing novel host-kinase directed therapies may be an efficacious strategy to prevent or treat COVID-19 and other coronavirus-mediated diseases.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-002204

RESUMO

Direct RNA sequencing using an Oxford Nanopore MinION characterised the transcriptome of SARS-CoV-2 grown in Vero E6 cells. This cell line is being widely used to propagate the novel coronavirus. The viral transcriptome was analysed using a recently developed ORF-centric pipeline. This revealed the pattern of viral transcripts, (i.e. subgenomic mRNAs), generally fitted the predicted replication and transcription model for coronaviruses. A 24 nt in-frame deletion was detected in subgenomic mRNAs encoding the spike (S) glycoprotein. This feature was identified in over half of the mapped transcripts and was predicted to remove a proposed furin cleavage site from the S glycoprotein. This motif directs cleavage of the S glycoprotein into functional subunits during virus entry or exit. Cleavage of the S glycoprotein can be a barrier to zoonotic coronavirus transmission and affect viral pathogenicity. Allied to this transcriptome analysis, tandem mass spectrometry was used to identify over 500 viral peptides and 44 phosphopeptides, covering almost all of the proteins predicted to be encoded by the SARS-CoV-2 genome, including peptides unique to the deleted variant of the S glycoprotein. Detection of an apparently viable deletion in the furin cleavage site of the S glycoprotein reinforces the point that this and other regions of SARS-CoV-2 proteins may readily mutate. This is of clear significance given the interest in the S glycoprotein as a potential vaccine target and the observation that the furin cleavage site likely contributes strongly to the pathogenesis and zoonosis of this virus. The viral genome sequence should be carefully monitored during the growth of viral stocks for research, animal challenge models and, potentially, in clinical samples. Such variations may result in different levels of virulence, morbidity and mortality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...